
  

Recent Advances to Estimation of Fixed-Interface Modal Models using 
Dynamic Substructuring 

Mathew S. Allen 
Department of Engineering Physics 

University of Wisconsin 
Madison, WI  53706 

msallen@engr.wisc.edu 
& 

Randall L. Mayes 
Sandia National Laboratories 

Albuquerque, NM 
rlmayes@sandia.gov  

 
 

ABSTRACT 

In 2010, Allen & Mayes proposed to estimate the fixed-interface modes of a structure by measuring the modes of 
the structure bolted to a fixture and then applying constraints to the fixture using the transmission simulator 
method.  While the method proved useful, and has indeed been used in studies since that point, a few peculiarities 
were noted.  First, in some cases the estimated fixed-base natural frequencies were observed to converge very 
slowly to the true values (in simulated experiments) as the number of constraints was increased. To formulate 
these constraints, prior studies used only the free-interface modes of the fixture or the measured modes of the 
assembly.  This work extends that to consider other sets of constraints, showing improved results.  Furthermore, 
in some prior studies it has been observed that there were errors of more than 10% in the natural frequencies even 
when the fixture motion was hundreds of times smaller than the motion of the structure of interest (and so it had 
presumably been removed).  This work explores this phenomenon, seeking to use the strain energy in the fixture, 
to the extent that it can be estimated using a test-analysis model for the fixture, as a metric to predict frequency 
error.  The proposed methods are explored by applying them to simulated measurements from a beam and from 
the NASA Space Launch System coupled to the Mobile Launcher. 

Keywords: Component Mode Synthesis, Hurty/Craig-Bampton, Boundary Conditions, Residual Flexibility, 
Residual Stiffness 

1. Introduction 

The problem outlined in Fig. 1 is a variant on a classical substructuring problem, and so various methods could be 
used to address it.  The method to be used here was developed in about 2010 and was validated through both 
simulations and experiments as published in [1] and as will be briefly reviewed subsequently.  In most of the 
literature on substructuring the goal is to assemble two substructures by applying a set of constraints (enforce 
compatibility) and enforcing force equilibrium.  The proposed application is somewhat simpler because we seek 
only to apply a set of constraints to one system to estimate the fixed base response.  As reviewed in [2], there are 
two main classes of approaches: Modal Substructuring or Component Mode Synthesis (CMS) and Frequency 
Based Substructuring (FBS).  

This paper focuses on the Modal Substructuring (CMS) family of approaches, which were pioneered by Martinez 
& Carne [3], Ewins [4] and others.  Early attempts proved to be extremely challenging because of the difficulty of 
estimating rotational responses at the interfaces; the methods are very sensitive to small errors in the 
measurements near the connection points.  One important advance in this area occurred recently with the 
discovery that the substructuring could be improved by using a basis of shapes to average over several sensors 
near the interface [5, 6] and adding additional sensors away from the interface [6, 7].  In light of these findings, 
Allen & Mayes developed the Transmission Simulator (TS) method [6, 8, 9] and began to report the first 
successful case studies in which an experimentally measured substructure was coupled to a finite element model 
through a continuous interface.  These ideas were later used to develop a procedure to estimate the fixed-interface 
modes of a structure from measurements of the structure on an assembly in [1].  In that study the method was 
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demonstrated on two test structures, which are shown in Fig. 1, and some results from those studies will be 
discussed subsequently.  This is the procedure that will be used in this paper. Note, the TS is sometimes called a 
“Substitute” in the works of Rixen et al. [10]. 

The FBS family of approaches are also known by a variety of names: Impedance Coupling [11, 12], Admittance 
Modeling [13, 14], Receptance Coupling, Norton-Thevenin Equivalent Circuit modeling, FRF Structural 
Modification [15, 16],  etc….  All of these approaches use measured frequency responses at various points on the 
structure (and in rare cases time domain impulse responses) to estimate the FRFs of an assembly from FRFs of 
each component separately.  At a minimum, the input and output FRFs must be measured at each of the 
connection DOF, and this can lead to difficulties for multi-point connections since the FRF matrix becomes large, 
potentially ill-conditioned, and slight errors in reciprocity can produce anomalies in the results [13].  The 
challenge is understanding to what level the residual mass and stiffness from out of band modes must be captured; 
the anti-resonances in the FRF matrix are very sensitive to these terms.  Recently, these challenges have been 
addressed by defining a set of basis vectors that span the space of base motion and using those to improve the 
conditioning in the force and response locations near the base.  For example see the substructuring work done by 
de Klerk, Rixen et al [17, 18] and the work by Napolitano & Yoder [19, 20].  This work focuses entirely on the 
modal substructuring approach, but the FBS alternative is important to keep in mind since it may prove 
advantageous in some situations. 
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Figure 1. Schematic of one potential application of the proposed method.  A modal test could be performed on the SLS when 
it is assembled to the ML and the modes of this assembly could be used to estimate the modes of the SLS with the interface 

fixed. 

As explained in the abstract, this work explores two variants on the substructuring approach proposed in [1] and 
applies them to two structures, a simple beam and a test-analysis model of the NASA Space Launch System 
(SLS). 

2. Theoretical Development 

A modal test [4] can be performed on a structure to identify a linear time invariant model of a structure.  The 
resulting modal model is comprised of N modes of vibration, whose shapes are measured at a certain set of 
measurement points.  For the purposes of this work, we presume that a test has been performed on a structure of 
interest which is connected to a fixture or transmission simulator [21] so the equation of motion for the 
fixture+structure is given by 
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where r is the rth natural frequency of the assembly,  r is the corresponding damping ratio and the matrices 

fφ and sφ  contain the mass-normalized mode shapes at the measurement points on the fixture, fx , and 

substructure, sx , respectively. 

The goal is to estimate the motion of the substructure with the interface between the fixture and substructure 
fixed, and this can be done if the motion of the fixture can be driven to zero.  To do this, we presume that the 

motion of the fixture can be described by a set of shapes, fixt
fφ . 

 fixt fixt
f fx φ q  (2) 

 

The following subsections will discuss various strategies for choosing the basis fixt
fφ . 

If the fixture were truly rigid and perfectly fixed to ground, then the motion of the fixture, fx would be zero, but 

all fixtures have finite stiffness, and so some motion will always be present.  The most straightforward remedy 
would be to estimate both the displacement and rotation at the points where the structure joins the fixture and then 
to apply constraints to force that motion to be zero, i.e. 0i x , where ix  are the DOF at the interface (see Fig. 1).  

Using this approach, the number of constraints to be applied is equal to the number of interface DOF, so if the 
fixture+substructure has N modes, and there are Ni interface DOF, then the resulting model for the fixed-interface 
substructure will have N-Ni modes.  While this method is straightforward, it was unfortunately illustrated in [1], 
that this method produces complicated results, with many spurious modes remaining in the model, and it seems to 
lack robustness when the measurements near the interface are noisy.  Instead, in this work we prefer to use a 
global set of constraints applied over all DOF fx .  If it is feasible to take measurements at or near the interface 

DOF, then those can also be included.  They are not required; it is only necessary to use measurement locations 
which cause the fixture mode shape matrix to be easily invertible. 

If the basis chosen, fixt
fφ , is full rank, then the fixture motions can be estimated from the measured motions, fx , 

as follows, 

    † †fixt fixt fixt
f f f f q φ x φ φ q , (3) 

where q denotes the modal coordinates of the assembled fixture+structure and  †
 denotes the Moore-Penrose 

pseudoinverse .  The desired model would have negligible motion of the fixture, or in other words, 

 fixt 0q . (4) 

These constraints can be applied using standard Ritz or substructuring methods [6, 8, 22].  In terms of the modal 
coordinates of the fixture+structure, the constraint equations are 

  fixt 0f f


φ φ q , (5) 

either of which constitutes a set of Nfixt constraint equations.  The matrix multiplying q is the matrix [a] in the text 
by Ginsberg [22], or B in the review by De Klerk, Rixen and Voormeeren [2].  The procedure described in either 
of those works can be used to enforce these constraints and hence to estimate the modes of the fixture+structure 



  

with the fixture motion nullified.  The “ritzscomb” Matlab® routine, which is freely available from the first author 
or on the Matlab Central File Exchange, implements the method in [22] and was used to perform the calculations 
for this work.  For completeness, the basic operations are summarized below, using the notation from [2]. 

First a matrix L is found that resides in the null space of  fixt
f f


B φ φ .  Then, applying the coordinate change 

uq Lq  and pre-multipying by LT to obtain a weak form of the equations (i.e. one that ignores any forces that 

are not within the span of the basis), the equations of motion can be written as follows, 

  T T T
f s

ˆˆ ˆ
u u u      Mq Cq Kq L φ φ F   (6) 

where T \ 2
\

ˆ
r   K L L , etc… 

One key challenge is to find a basis set, fixt
fφ , that effectively constrains the fixture to ground using the smallest 

possible set of shapes, in order to maximize robustness and the number of modes that can be estimated.  The key 
method presented in [8] is reviewed below, as well as a few proposed alternatives. 

2.1 Modal Constraints (or MCFS method [8]) 

Using the approach outlined in [8], a finite element model is created for the fixture, described by ,fixt fixtK M , 

and then the following eigenvalue problem is solved to estimate a set of shapes , MCFSφ , 

  2 MCFS 0fixt fixt fixt    
K M φ , (7) 

which are partitioned to the measurement DOF and used as the desired basis , i.e. fixt MCFS
f fφ φ . 

In the study in [8], the authors applied this approach to a plate with a beam attached, as shown in Fig. 2. In that 
study, the authors found that even after constraining out many mode of the free-free plate, the resulting mode 
shapes of the cantilever beam agreed very well with theory, yet the natural frequencies estimated were in error by 
between 3 and 10%.  The study was repeated with the experimental measurements replaced with modes from a 
FEM (to eliminate measurement errors) and the natural frequencies had almost the same pattern of errors.  This 
revealed that modal truncation was the culprit, i.e. that it was not possible to completely nullify the motion of the 

fixture due to an incomplete basis for the fixture+substructure and an incomplete set of shapes fixt
fφ .  A further 

study using the FEM revealed that the natural frequency errors decreased to between 0.2 and 3% if the plate was 
made three times thicker near the connection point (schematic on the right in Fig. 2). 



  

     

Figure 2. (left) Photograph of a 0.5” thick by 1.0” wide steel beam mounted on a 0.625” thick steel plate.  The modes of this 
system were measured at a grid of points on the plate and used to estimate the fixed-interface modes of the beam.  (right) 

Schematic of a FEM of the structure with the region near the interface made thicker (more rigid). 

2.2 Modal Constraints with Rigidized Substructure (MC-R) 

In a recent work, it was noted that MCFS shapes don’t exercise the interface, and hence this might explain the 
slow convergence of the MCFS approach that was seen in [8].  If the mass properties of the substructure are 
known, then a rigid mass can readily be added to the finite element model of the fixture to load the interface and 

hopefully produce a better basis.  The resulting FEM is denoted ,fixt R fixt R K M , and once again an eigenvalue 
problem is solved to estimate the motion of the fixture+rigid substructure. 

  2 MCR 0fixt R fixt R fixt R      
K M φ , (8) 

which are partitioned to the measurement DOF and used as the desired basis , i.e. fixt MCR
f fφ φ . 

It is important to note that the constraints in Eqs. (7) and (8) only enforce zero motion at the fixture measurement 
points if the number of measurement points equals the number of fixture modes, but ideally one would actually 
use more measurement points on the fixture than there are active modes in the structure in order to average out 
noise and measurement errors.  As a result, the motions of the physical measurement points will typically not be 
exactly zero after applying the constraints.  In the best case the residual motion would be due only to 
measurement noise, but experience has shown that there is typically some residual motion in the fixture that is 
physical, since one is seeking to constrain an infinite dimensional system with a finite number of constraints.  
Fortunately, one can readily observe the fixture motions after applying the constraints to see whether the 
constraints were effective in enforcing a rigid boundary condition, and this was demonstrated in [8].  In this work 
we take this a step further, seeking to use the FEM of the fixture and the measured fixture motions to obtain better 
estimates of the natural frequencies of the substructure on a rigid foundation. 

2.3 Natural Frequency Correction Scheme 

In the example cited in Fig. 2, even after using the best available set of constraints, the natural frequencies 
estimated continued to show errors.  It was noted that even though the residual motions of the fixture (the plate in 
Fig. 2) were small, less than 1% of the motion of the structure of interest (the vertical beam), because the stiffness 
of the plate is very high, it is possible that exceedingly small motions of the fixture have an important contribution 
to the strain energy in each mode, and hence to the natural frequencies. 

In this work, we propose to use Test Analysis Models (TAMs) derived from finite element models of the fixture 
to estimate the error in the natural frequencies due to the residual flexibility that remains in the fixture.  Consider 

an undamped structure that is vibrating in the rth mode, so that  ( ) Re ri t
rt e x φ .  The peak potential and 

kinetic energies must be equal, and the kinetic energy, T1
2trueKE  x Mx   can then be rewritten to find that the 



  

maximum kinetic energy is 2 T1
2max( ) r r rKE   φ Mφ .  Similarly, the maximum potential energy is 

T1
2max( ) r rPE  φ Kφ , and equating these two we obtain the following equation that relates the rth natural 

frequency to the energy in the structure. 

 
T1

2 2
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2
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KE
  

φ Kφ

φ Mφ
, (9) 

where the notation *KE  reminds the reader that this is not the true kinetic energy, but an energy like quantity.   

The equation above can be expanded in a Taylor series to obtain the desired relationship,  
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, (10) 

 

where we have assumed that the kinetic energy does not change significantly.  This is in line with our experience, 
where the mode shape of the structure as a whole is nearly unchanged, so that the kinetic energy would not 
change significantly.  The potential energy can then be decomposed by separating the mode shape into DOF on 
the structure of interest, denoted Srφ , and those on the fixture or transmission simulator, Frφ .  We have 

measurements of the natural frequency and mode shape for a case where the fixture motion is non-negligible, 
|r meas  and we desire to know the natural frequency that would be obtained if the fixture motion were zero 0|r .  

Expanding about the latter case, the relationship becomes the following. 

  0 ,0 ,0 ,0*

1
| |

2r meas r S S F F J J
r

PE PE PE PE PE PE
KE

 


       , (11) 

where 

 T1
, ,2S Sr meas Sr measPE  φ Kφ , (12) 

and so forth for the other sensor sets and for the measured case, ()|meas,  and the case where the fixture motion is 
zero ()|0. 

Before proceeding it is helpful to illustrate using a simple example.  Consider a spring attached to ground via two 
springs in series, ks representing the stiffness of the system of interest and kf representing the stiffness of a fixture.  
Then let the mass and ks be unity as the stiffness of the fixture is varied between 1 and 100 (i.e. 1x to 100x stiffer 
than the system of interest).  The natural frequency of the system was then computed and is shown in Fig. 3.  The 
line labeled “Measured” corresponds to the natural frequency that would be measured on the elastic fixture, while 
the line labeled “True” is the frequency that we would obtain if the fixture was infinitely stiff.  The measured 
frequency can be seen to decrease as the stiffness of the boundary decreases.  The regime of interest are those 
cases where the natural frequency shows a small (i.e. ~10%) error. 
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Figure 3. (a) Ratio between the true natural frequency (i.e. that measured on an infinitely stiff foundation) and that measured 
on a foundation with stiffness kf.  (b) The potential energy (PE) in each of the springs ks and kf as a function of the ratio ks/kf.  

For the magenta curve, =2.0. 

The second pane in Fig. 3 shows the energy in each of the springs as a function of their relative stiffness.  As the 
fixture becomes stiffer (with Ks/Kf approaching 0), less and less energy is stored in the fixture and the energy in 
the system approaches that which it would have on a rigid foundation.  If the energies ,0S S SPE PE PE    and 

,0 0F F F FPE PE PE PE      were known, then one could use Eq. (11) to correct the measured natural 

frequency, as shown by the dashed black line in Fig. 3a.  Unfortunately, while we expect that FPE  could be 

estimated using a high quality ROM of the fixture or transmission simulator, it seems less likely that SPE  could 

be reliably estimated.   

It appears that the only viable option is to use some empirical means to estimate the other energy quantities from 

FPE .  For example, in the simple case shown, SPE  is approximately equal to FPE , with =2.0, as shown 

with the magenta line in Fig. 3.  Using this assumption, the empirical natural frequency correction scheme 
becomes the following  

  T1
0 , ,2*

1
| | (1 )

2r meas r Fr meas Fr meas
r KE

  


   φ Kφ , (13) 

 

and the result for this simple system, shown in Fig. 3a, can be seen to work quite well up to ks/kf=0.2, or to the 
point where the error in the natural frequency is about 10%.  In the absence of other information, we shall 
presume that this empirical factor, =2.0, is reasonable for structures in general and evaluate the method for other 
structures. 



  

3. Numerical Results 

These two concepts, using mass-loaded shapes to enhance the constraint basis (Section  2.2), and the natural 
frequency correction scheme (Section  2.3), were tested on two structures to evaluate their performance.  The 
results are discussed in the following subsections. 

3.1 Free-Free Beam 

The first structure considered is an assembly of two free-free beams, shown below. The beam on the left is the 
“fixture” or transmission simulator, and the goal is to estimate the modes of the beam on the right when it is 
perfectly fixed.  Two cases are simulated using one-dimensional finite element models.  For all of the cases the 
beams have the following properties: height, h = 0.75 in, width, b = 1 in, Young’s Modulus, E = 30.0e6 psi, 
density,  = 0.28 lb/in^3.  For Case 1, the lengths of the beams are LA = 12 in, LB = 24 in, while Case 2 represents 
a more challenging situation in which Beam A is much more flexible relative to Beam B, with LA = 20 in, LB = 16 
in.  For all of the cases considered, we use all modes of A and B up to 6400 Hz, in other words we presume that 
the modal test on each component is able to extract all of the modes from 0 to 6400 Hz, including the rigid body 
modes. 

Case 1:
 

Beam A Beam B

 

Case 2: Beam A Beam B

 

Figure 4. Schematic of the beam system studied in this section.  Two cases will be considered, Case 1 (top) and Case 2 
(bottom), which differ in the relative lengths of Beams A and B.   

The first step is to compute the mode shapes of the transmission simulator when a rigid mass is used in place of 
the structure of interest.  Figure 5 shows the resulting mode shapes for Case 1; these shapes are used in Eq. (5) to 
eliminate the motion of the transmission simulator.  One can see that the rigid mass enriches the modal basis, as 
the resulting shapes show asymmetry and involve deformation near the interface. 
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Figure 5. Case 1: Mode shapes of the Transmission Simulator (Beam A) when Beam B is replaced by a rigid mass.  This is 
the basis of shapes used to form the constraints in Eq. (5).   

The standard modal substructuring approach is then used to enforce these constraints, and the natural frequencies 
and mode shapes of the system with Beam A fixed are then computed.  For Case 1, the resulting shapes are 



  

compared with the true fixed-interface shapes in Fig. 6 and the natural frequencies are compared in Table 1.  For 
this case there were 12 modes of the assembly and 5 constraint shapes below 6400 Hz, and so this modal basis 
produces estimates for the first 7 modes of beam B.  A Test-Analysis-Model (TAM) was created of Beams A and 
B using the displacement of each node (the rotations were statically reduced out), and this was used to estimate 
the potential energy in Beam A when it deformed into each mode, and the kinetic energy of Beam B. 
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Figure 6. Case 1: Mode shapes of Beam B with the Fixed-Interface fixed.  Solid lines show the true fixed-interface shapes of 
the FEM, while the dotted lines show those estimated by Modal Substructuring using the MC-R method in Sec.  2.2. 

 

Table 1: Case 1: Natural Frequencies estimated by substructuring for two cases: (A=Free-Free) when the 
modes of the transmission simulator are computed with the interface free, (A+Rigid B) when the system of 

interest is replaced with a rigid mass, and  (A+Rigid B, Corrected) the latter case with the frequencies 
corrected using the empirical formula. 

B Freq. 
True 

B Freq. 
CMS 

A=Free-
Free % Error 

B Freq. 
CMS 

A+Rigid 
B % Error 

B Freq. 
CMS  

A+Rigid B, 
Corrected % Error 

42.8 39.9 -6.7 40.7 -4.9 41.8 -2.3 
268.2 251.5 -6.2 256.1 -4.5 262.1 -2.3 
751.0 707.5 -5.8 720.1 -4.1 738.7 -1.6 

1471.6 1393.2 -5.3 1417.2 -3.7 1464.9 -0.5 
2432.7 2314.7 -4.9 2353.6 -3.3 2456.9 1.0 
3634.1 3478.3 -4.3 3534.5 -2.7 3723.9 2.5 
5075.7 4903.9 -3.4 4975.5 -2.0 5255.9 3.6 

 



  

The results show that adding a Beam B to the transmission simulator enriches the basis, reducing the errors in the 
natural frequencies noticeably, although not dramatically.  When using a free-free transmission simulator, the 
error, show in the third column, range between -3 and -7%  In contrast, when a rigid Beam B is used to enrich the 
basis, the errors drop to -2 to 5%.  The empirical natural frequency correction scheme improves the results further, 
most notably reducing the error in the first natural frequency from -4.9% to -2.3%.  However, for some of the 
higher natural frequencies the scheme over-corrects the frequencies.  When considering this, one should note that 
when using substructuring, they typical rule of thumb states that the natural frequencies should be accurate up to 
50-66% of the frequency range used for each subcomponent, or 3200 to 4300 Hz in this case.  However, here we 
obtain excellent results up to 80% of the frequency range.  In our experience, if the fixture is quite rigid (i.e. well 
approximated as a rigid mass) then the results may be excellent in the entire frequency range.  In contrast, if the 
fixture is very flexible then the results may be poor even below 50% of the measured frequency range. 
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Figure 7. Case 2: Mode shapes of Beam B with the Fixed-Interface fixed.  Solid lines show the true fixed-interface shapes of 
the FEM, while the dotted lines show those estimated by Modal Substructuring using the MC-R method in Sec.  2.2. 

Next consider the case where Beam A is longer, i.e. the fixture is more flexible relative to the structure of interest.  
In this case there are once again 12 modes of the assembly below 6400 Hz, but now we have 7 constraint shapes 
in that frequency range.  As might be expected, the more flexible fixture produces errors in the natural frequencies 
that are much larger, ranging between -11 and -13%.  In this case using the enhanced basis for Beam A reduces 
these errors to -7 to -9%.  Table 2 also shows the natural frequencies corrected using the empirical scheme with 
=2.  While the correction scheme works very well for the first mode, it increases the errors for the other modes, 
dramatically for the highest frequency modes.  In the case of those modes, it may be that the strain energy is so 
large that the Taylor series expansion is no longer valid. 



  

Table 2: Case 2: Natural Frequencies estimated by substructuring for two cases: (A=Free-Free) when the 
modes of the transmission simulator are computed with the interface free, (A+Rigid B) when the system of 

interest is replaced with a rigid mass, and  (A+Rigid B, Corrected) the frequencies corrected using the 
empirical formula. 

B Freq. 
True 

B Freq. 
CMS 

A=Free-
Free % Error 

B Freq. 
CMS 

A+Rigid 
B % Error 

B Freq. 
CMS  

A+Rigid B, 
Corrected 

% 
Error 

96.3 83.8 -13.0 88.1 -8.5 95.0 -1.4 
603.5 530.0 -12.2 555.9 -7.9 680.0 12.7 

1689.7 1493.1 -11.6 1565.2 -7.4 2912.6 72.4 
3311.2 2936.1 -11.3 3078.6 -7.0 9963.9 200.9 
5473.7 4841.9 -11.5 5066.5 -7.4 35127.1 541.7 

3.2 NASA Space Launch System on Mobile Launcher 

The methods were further evaluated by testing them on the new Space Launch System (SLS) that NASA is 
developing.  While legacy vehicles, such as the Saturn V and the Space Shuttle, were tested in free-free conditions 
in order to update the corresponding finite element models, NASA no longer has a facility with the capability to 
lift and hang even the initial 70t payload model so that it could be tested free free.  This initial model is expected 
to weigh approximately 5.5 million pounds, or the equivalent of 7.5 fully-loaded 747 jets1.  Instead, plans are 
being developed to test the SLS while it is mounted on the Mobile Launch (ML) platform, within the Vehicle 
Assembly Building (VAB).  This test is internally called the Integrated Modal Test (IMT).  Even though the SLS 
is more massive than the SLS, the ML has significant low frequency dynamics, so it will become necessary to 
also model the ML in order to correlate to this test.  This is a significant undertaking, since the ML is a 
complicated frame structure with thousands of bolted structural members, extensive cabling systems, etc… 

One possible alternative would be to use the measured modes of the SLS assembled to the ML (SLS+ML) in 
order to predict the modes that the SLS would have on a truly rigid foundation (i.e. a fixed interface).  This 
section uses test analysis models of the SLS and ML to explore this possibility.  Statically reduced test-analysis 
models (TAMs) were provided with a few thousand degrees of freedom, and which were used to estimate the 
motion of the (SLS+ML) at 625 measurement DOF.  The measurement DOF were chosen to distinguish between 
the (SLS+ML) modes, as measured by the MAC and Cross-Orthogonality.  The model also contains 24DOF at the 
interface between the SLS and ML (note that the restraining arm towards the top of the tower was not connected 
to the SLS).  These DOF consist of translations at 8 posts, four at the base of each Solid Rocket Booster (SRB).  
These 24DOF were fixed in the model to estimate the true fixed based modes of the SLS, and that model will be 
used as a truth model. 

Two case studies will be presented here.  In the first the TAMs will be used to estimate the free-free modes of the 
ML, and the same fixed-interface method that was presented in [1] is used, which is here denoted ML-F since the 
ML has a free-interface.  For the second case, the modes of the ML will be computed with the SLS replaced with 
a rigid mass, as proposed in Sec.  2.2, and the results will be denoted ML-R.  In both cases, we presume that the 
first 149 modes of the SLS+ML are extracted from the modal test, corresponding to all modes in a certain 
frequency range.  Then 84 modes of the ML-F or ML-R are used as constraints, corresponding to all modes of the 
ML in approximately the same frequency range.  The ML-F actually had about 10% more modes in the frequency 
range of interest, but the same number of constraints was used to obtain a more straightforward comparison. 

Table 3 shows the errors in the natural frequencies and the corresponding MAC values for three cases.  First, it is 
interesting to consider the errors that would be obtained if the SLS+ML modes were compared directly with the 
modes of the SLS-Fixed.  If this is done, the natural frequencies have errors ranging between -12.4 and 1.4% over 
the first ten modes, and the MAC values range between 0.92 and 1.00, so the ML does form a fairly effective 
fixed-interface for the SLS.  However, it is important to note that SLS+ML contains many additional modes and 

                                                      
1 https://www.nasa.gov/pdf/588413main_SLS_Fun_Facts.pdf, accessed October 2017. 



  

this table only shows those SLS+ML modes that best matched the true SLS-Fixed modes.  The modes estimated 
by CMS reduce these frequency errors, to between -6.0% and 0.6% for the ML-F method and -11.0% and -0.1% 
for the ML-R method.  The improvement in the MAC between the modes is even more significant, with most 
MAC values above 0.97.  However, for a few of the modes the MAC values decrease significantly, most notably 
to 0.87 for the 4th mode in the ML-R results. 

Table 3: Errors in the natural frequencies estimated by substructuring for the SLS.  Shaded modes are the 
primary modes of interest. 

 
Measured 
SLS+ML 

84 Constraints: Modes of 
ML-R (i.e. SLS Rigidized) 

ML-R 
Corrected

84 Constraints: Modes of 
ML-F (i.e. SLS Removed) 

SLS 
Mode # 

Freq. % 
Error MAC 

CMS 
Mode # 

Freq. % 
Error MAC 

Freq. % 
Error 

CMS 
Mode # 

Freq. % 
Error MAC 

1 -12.4 1.00 1 -11.0 1.00 2.0 1 -2.6 1.00
2 -9.4 1.00 2 -5.1 1.00 -3.2 2 -6.0 1.00
3 -8.7 0.92 4 -1.7 0.98 -1.3 4 0.3 1.00
4 -6.8 0.95 3 -6.0 0.87 -4.0 3 -5.9 0.99
5 -2.1 0.95 5 -0.5 1.00 -0.5 5 -0.7 1.00
6 -3.4 1.00 6 -2.6 0.98 -2.5 6 -3.3 0.99
7 1.4 0.99 7 -2.9 0.98 -0.6 7 0.5 0.93
8 -1.6 0.94 8 -3.3 0.97 -2.9 8 -3.2 0.79
9 -2.2 0.97 9 -2.3 0.98 -0.6 9 0.6 0.96

10 -1.9 0.95 10 -0.1 1.00 0.0 10 -0.4 1.00
11 -2.1 0.97 11 -2.2 0.99 -0.4 11 -1.9 0.99
12 -2.2 0.99 12 -2.8 0.97 -2.4 12 -2.3 0.95
13 -6.3 0.98 13 -5.4 0.82 -2.8 13 -5.8 0.95
14 -1.6 0.92 14 -1.8 0.87 8.5 14 -2.1 0.96
15 -6.5 0.76 15 -1.1 0.64 18.8 15 -1.1 0.70
16 -35.2 0.45 16 -1.2 0.80 5.5 16 6.3 0.43
17 -0.1 0.99 18 0.3 0.98 22.9 18 -0.3 0.98
18 0.8 0.39 20 -0.5 0.32 6.0 20 -1.2 0.27
19 -1.5 0.87 19 -4.8 0.67 -0.8 19 -9.0 0.43
20 -6.9 0.70 17 -8.7 0.13 9.7 17 -7.7 0.24

 

Figure 8 shows the shapes of the second mode of the fixed-interface SLS for two cases: the corresponding mode 
of the SLS+ML (Mode 6) and the second mode estimated by substructuring using ML-R constraints.  The 
character of the modes is difficult to discern from these static plots, but they do show that the ML base and tower 
show significant motion for the SLS+ML mode, even if Table 3 shows that its frequency and shape are fairly 
accurate.  In contrast, the modes estimated from substructuring show no visible motion of the ML tower or base. 

 



  

 

Figure 8. Mode shapes of Mode 2 from (left) the measurements on the SLS+ML, i.e. the first column in Table 3, and (right) 
from substructuring using the ML rigidized, i.e. ML-R.  

Figure 9 shows the MAC between the modes estimated by substructuring, with the true modes of the SLS with a 
fixed interface (SLS-Fixed).  The MAC plots show that in both ML-F and ML-R cases there is a good 
correspondence between the true modes and those estimated by substructuring.  However, the ML-R results show 
better agreement for the higher frequency modes, while the ML-F results seem to still contain several spurious 
modes beyond about the 16th. 

 

 

Figure 9. MAC comparing the modes of the SLS-Fixed as estimated using substructuring with those of the truth model for 
two cases: (ML-F, right) the ML with a free interface, (ML-R, left) the ML with a rigid mass connected to the interface. 

 

It is also informative to consider the drive point FRFs at a few points as would be obtained by the various models.  
Drive points near the top of the SLS were used that were approximately in the axial and the two lateral directions, 
and the FRFs were reconstructed using the modes from the ML-F and ML-R method and are shown in Fig. 10.  
The FRF show that the ML-R method is far superior in estimating the high frequency axial modes (middle row), 
although it is less accurate for the first bending mode in the in-out direction and for the higher frequency in-out 
modes. 
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Figure 10. Drive-point frequency response functions for the SLS-Fixed as estimated using substructuring with those of the 
truth model for two cases: (ML-F, right) and (ML-R, left).  The FRFs are also shown for the SLS+ML, or the FRFs that 

would be obtained in the test of the coupled system if no post processing is performed.  (top) – Lateral direction, (middle) – 
Axial direction, (bottom) – Bending towards/away from ML tower 
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Figure 11. Mode shapes of Modes 1 (left) and 16 (right) for the ML-R case.  The character of the modes is difficult to discern 

from these static plots, but they do show that the ML base and tower shows no visible motion for Mode 1, while it shows 
some residual vibration for the axial Mode 16. 

As was done in the previous section, we can visualize the residual motion in the fixture (i.e. the ML) to 
understand how effective the constraints were.  Figure 11 shows the SLS+ML for two modes estimated using the 
ML-R approach.  The residual motion in the ML is not visible, but it is still presumed to be the cause of the 
frequency errors seen in Table 3.  In order to evaluate this, the natural frequency correction scheme was evaluated 
for this system using =2 as in the previous section and using the mode shapes estimated by the ML-R method.  
The method proves effective at correcting the natural frequencies of the first few modes, reducing the errors in 
those frequencies from between -11.0% to -0.5% to -4% to 2.0%. 

4. Conclusions 

Two enhancements have been presented to the method proposed by Allen, Gindlin & Mayes [1] that estimates the 
fixed-interface modes of a structure that is connected to a flexible fixture.  The first is a small modification to the 
modal basis used to define the constraints that are applied to the fixture; local deformations near the interface are 
captured by adding a rigid mass to the fixture before computing its modes.  This was found to improve the 
estimates of the structure’s fixed-interface natural frequencies to a certain extent, although not dramatically.  We 
also explored the use of schemes to correct the natural frequencies estimated for the fixed-interface structure, 
based on the strain energy remaining in the fixture, as estimated by a Test-Analysis Model.  The theoretical 
development revealed that, because the change in Potential Energy in the structure of interest could not be 
estimated accurately, it was necessary to assume that it was proportional to the energy in the fixture, and this 
makes the method empirical and calls its general applicability into question.  However, for the cases studied to 
date the empirical method seemed to provide good results so long as the deformation in the fixture was not too 
large.  A general statement that continues to hold with these and other investigations since the publication of [1] is 
that the fewer modes the fixture has in the measured bandwidth, the better the substructuring approach works to 
estimate the fixed base result. 
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